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Abstract Renin has recently attracted much attention in the
antihypertensive community, since this enzyme starts the
angiotensin-converting cascade and forms the rate-limiting
step in this cascade. In the present study, we describe a new
method called active-site spatial partitioning (ASSP) for
quantitatively characterizing the nonbonding interaction
profile between renin and the substructures of indole-
3-carboxamide derivatives—a novel class of achiral renin
inhibitors that exhibit both high affinity and strong specificity
for renin, thus blocking its active state—on the basis of
structural models of protein–ligand complexes. It is shown
that the ASSP-derived potential parameters are highly corre-
lated with the experimentally measured activities of indole-
3-carboxamides; the statistical models linking the parameters
and activities using a sophisticated partial least squares regres-
sion technique show much promise as an effective and pow-
erful tool for generalizing and predicting the pharmaceutical
potencies and the physicochemical properties of other modified
derivatives. Furthermore, by visually examining substructure-
color plots generated by the ASSP procedure, it is found that
the relative importance of nonbonding contributions to
the recognition and binding of a ligand by renin is as
follows: steric < hydrophobic < electrostatic. The polar and
charged moieties that float on the surface of the ligand mole-
cule play a critical role in conferring electrostatic stability and
specificity to renin–ligand complexes, whereas the aromatic

rings embedded in the core region of the ligand are the main
source of hydrophobic and steric potentials that lead to sub-
stantial stabilization of the complex architecture.
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Introduction

Persistent hypertension is one of the risk factors for stroke,
myocardial infarction, heart failure, and arterial aneurysm,
and is the leading cause of mortality in the Western world
[1]. The renin–angiotensin system (RAS) plays a key role in
the regulation of blood pressure and in the maintenance of
sodium and volume homeostasis, which can be activated
when there is a loss of blood volume or a drop in blood
pressure (such as in hemorrhage). Alternatively, a decrease
in the filtrate NaCl concentration and/or a decreased filtrate
flow rate will stimulate the macula densa to release renin.
Renin stimulates the production of angiotensin I from angio-
tensinogen, an α2-globulin that is produced constitutively
and released into the circulation mainly by the liver. Angio-
tensin I by itself is inactive. However, when acted upon by
angiotensin-converting enzyme (ACE), it gets converted to
angiotensin II, which is active and is responsible for most of
the pressor effects [2]. Since the action of renin represents
the rate-limiting step in this cascade and angiotensinogen is
its only known substrate, inhibiting this step would be a
very effective antihypertensive strategy [3].

Direct renin inhibitors are the newest type of medicine for
high blood pressure. These block renin from entering the
active state, thus preventing the production of angiotensin I
from angiotensinogen. As a consequence, blood vessels
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relax and widen, making it easier for blood to flow through
the vessels. Monoclonal antibodies were used as early inhib-
itors of renin, and these proved to be excellent probes of
enzyme function. However, they were in no way suitable for
use as a medication, as most were immunogenic and had to be
administered parenterally [4]. Transition state analogs were
then synthesized and found to be potent inhibitors of renin [5],
but they had drawbacks because of their peptide-like nature
and their lack of oral bioavailability. Further modifications of
these lead compounds led to the development of aliskiren
(Fig. 1a), the only direct renin inhibitor that is clinically used
as an antihypertensive drug [6]. A review of six large-scale
clinical trials of aliskiren was published in the May 2007 issue
of the American Journal of Hypertension. The authors report
that, because of reactive renin secretion, this drug is not any
more effective than those already widely used to control
hypertension [7]. In addition, the four chiral centers and high
molecular weight associated with the aliskiren molecule make
it rather difficult to synthesize and separate this compound. In
order to realize new antihypertensive drugs with low structural
complexity and high biological activity and oral bioavailability,
several new classes of direct renin inhibitors have been devel-
oped recently [8, 9], among which nonpeptide indole-
3-carboxamide derivatives (Fig. 1b) seem to be good candi-
dates. Indole-3-carboxamide derivatives have no chiral centers
and possess low molecular weights and considerable rigidity
[9]. In addition, the crystal structures of three indole-
3-carboxamide compounds in complex with renin have been
solved at a high level of resolution, and unexpected binding
modes were observed in these complex systems. These are
particularly interesting from the perspectives of elucidating
the physicochemical basis of inhibitor recognition and associ-
ation with the target protein as well as optimizing the ligand
structure to obtain high-affinity and high-specificity molecular
entities.

Given the known complex crystal structures and the
quantitatively measured affinities between renin and
indole-3-carboxamides [9], we would like to answer ques-
tions like: how do the substructures of ligands in the com-
plexed state affect their interactions with renin, and which
nonbonding properties associated with a given substructure
can substantially contribute to the binding potency of ligand
molecules? Previously, Politi et al. successfully developed a
docking-based scoring strategy aimed at the precise predic-
tion of binding affinity between renin and its inhibitors [10].

Alternatively, the quantitative structure–activity relationship
(QSAR) approach appears to be a promising way to tackle
these problems, as this can correlate the structural properties
of ligands to biological activity statistically, and it can
explain physicochemical aspects underlying biological
activity in a straightforward manner. The long development
of QSAR methodology has ranged from the use of the
Hansch–Fujita [11] and Free–Wilson [12] methods to topo-
logical indices [13], quantum parameters [14], 3D-QSAR
[15], hologram QSAR [16], 4D-QSAR [17] (or 5D- [18] or
6D-QSAR [19]), and receptor-based QSAR [20], although
3D-QSAR seems to be the most popular because it can
accurately describe the conformational information for drug
ligands, and also because a number of powerful 3D-QSAR
methods such as CoMFA [21], CoMSIA [22] and SOMFA
[23] have been readily available over the past few decades.
3D-QSAR has demonstrated that it is good at predicting the
biological activities of ligands and explaining the contribu-
tions of molecular structures to this activity, but it mainly
concentrates on the ligands rather than the interaction be-
tween the ligands and their common receptor. 3D-QSAR
also has some other problems that make this method far
from perfect (see, e.g., Doweyko’s critical review of 3D-
QSAR methodology [24]). Since then, Hopfinger and
Vedani et al. have attempted to develop post-3D-QSAR
approaches such as 4D-, 5D-, and even 6D-QSAR
[17–19], all of which aimed to incorporate receptor–ligand
interaction information into the modeling process. However,
these efforts can only be regarded as indirect approaches to
solving this problem, because they do not use real complex
structure data (i.e., crystal or NMR structures) to derive
QSAR models. With the rapid increase in the number of
solved protein–ligand 3D complex structures deposited in
the PDB database in recent years, it has been possible to use
this direct information to develop receptor-based QSAR
(RB-QSAR) approaches. Several RB-QSAR methods have
already been proposed to characterize the nonbonding inter-
actions of a ligand with a receptor. However, most of these
methods do not split the total interaction of a ligand into the
contributions from each structural fragment of the ligand,
and they do not provide spatial color plots to straightfor-
wardly explain how the structural fragments influence the
biological activity. This is because RB-QSAR methods
commonly compute atom-pair nonbonding interactions
between ligand and receptor, and these interactions cannot
be assigned to a specific region in the active site of the
receptor.

In an attempt to (at least partially) solve these problems,
we have developed a novel QSAR method called active-site
spatial partitioning (ASSP), which dissects the nonbonding
profile around the active site of renin and associates the
substructural properties of bound ligands with their biological
activity. In this procedure, structural models of complexes of

Fig. 1 a–b Comparison of structural complexity between aliskiren (a)
and indole-3-carboxamide derivatives (b) (R1, R2, and R3 are six-
membered ring derivatives while R4 is a short chain)

4418 J Mol Model (2012) 18:4417–4426



renin bound to indole-3-carboxamide derivatives were
obtained computationally, and the space containing the entire
active site of renin was then partitioned into thousands of
small subregions. Subsequently, the nonbonding potentials
between renin and the ligand moieties of each region were
calculated using an empirical or semi-empirical formula and
correlated with the experimentally determined activity of the
ligand molecule using a statistical modeling approach. This
allowed several structure-based statistical models to be built
which could be used to quantitatively predict the biological
activities of unknown indole-3-carboxamide derivatives and
to qualitatively explain the nonbonding contributions of
bound ligand substructures to the biological activity of the
ligand. In this paper, we describe work done to evaluate the
potential of ASSP as a predictive and analytical tool. Further-
more, utilizing substructure-color plots generated by the ASSP
procedure, the structural foundations of renin–indole-3-carbox-
amide recognition and the binding process are discussed in
detail with respect to their potential application to lead modifi-
cation and optimization.

Materials and methods

Data set

Very recently, Scheiper et al. reported that a new class of
indole-3-carboxamide compounds were potent and achiral
renin inhibitors [9]. In their study, the first active candidate
for an indole analog was discovered via high-throughput
screening (HTS) of an internal collection, and this was
rapidly optimized, resulting in phenoxy and benzyl deriva-
tives at the 2 position of the indole. These optimized com-
pounds displayed increased binding activity, and were used
as a starting point to create a series of indole-3-carboxamide
derivatives. The molecular structures and biological activities
of 44 derivatives as well as the first active candidate are
tabulated in Table S1 of the “Electronic supplementarymaterial”
(ESM), inwhich the in vitro activity values, pIC50, are expressed
as the negative logarithm of IC50, which is the median effect
concentration of a given renin inhibitor. Briefly, to calculate this
IC50 value, the activity of the inhibitor was evaluated in dupli-
cate in a ten point concentration range, performing 2–4
independent experiments. The IC50 value was then obtained as
the geometric mean of these replicated assays [25].

Setting up the structural models
of renin–indole-3-carboxamide complexes

Recently, the crystal structures of the complexes of renin
with three indole-3-carboxamide ligands were solved by
Scheiper et al. (PDB entries: 3oqk, 3oqf, and 3oot, respec-
tively) [9]. We selected the complex formed by the

compound with the highest activity, compound 41 (IC500
0.002 μM), as the template for constructing structural mod-
els of complexes of the other 44 compounds bound to renin.
A combination strategy was employed to generate a target
complex model from the template. Briefly, the ligand mol-
ecule in the template complex was modified manually into a
target ligand in the environment of HyperChem 8.0 (Hyper-
cube, Inc.), and then the modified ligand as well as renin
residues within 6 Å of the ligand were optimized in an
unconstrained manner using the CVFF force field as imple-
mented in Insight II (Accelrys, Inc.). The superposition of
the virtually constructed ligands 2 and 3 onto their crystal
structures in the active pocket of renin is shown in Fig. 2. As
can be seen, the crystal and the constructed structures were
fairly well aligned, with corresponding root-mean-square
deviations (RMSD) of 0.307 and 0.438 Å for ligands 2
and 3, respectively. This suggests that the combination
protocol described above is capable of reproducing the
native conformations of the indole-3-carboxamide series in
the active site of renin with significant reliability.

Spatial partitioning of the active site of renin

The active-site spatial partitioning (ASSP) proposed in this
work is described in detail in the following four steps
(Fig. 3):

In step 1, as mentioned above, structural models of the
complexes of 44 ligands with renin were constructed
from the crystal structure of renin–compound 41. The
constructed ligands were therefore automatically
aligned with compound 41. However, in order to further
improve the alignment of the constructed ligands in the
renin active pocket so that we could use the subregions
with the most unused space (“least full subregions”) to
accommodate all of the atoms of the ligand, a
re-superposition procedure was conducted. Briefly, all
44 constructed ligands as well as the renin residues
within a distance of 6 Å from the ligands were
re-superposed on the template complex (i.e., containing
compound 41) using the popular minimizing RMSD
approach, which is also applied in the famous CoMFA
approach [21], as implemented in Insight II (Accelrys,
Inc.). It is worth noting that, although in our work the
alignment was carried out on ligands as well as their
surrounding residues, only heavy ligand atoms were
considered in the alignment (i.e., residue atoms did
not contribute to the alignment; they were just passively
translated and rotated with the ligand atoms). This was
done because the main goal of the re-superposition was
to concentrate ligand atoms, not residue atoms, in the
least full subregions.
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In step 2, the consensus space around these superposed
ligands was partitioned into thousands of small subre-
gions. This space should contain all of the atoms in the
45 ligands and the dimensions of each subregion in the
x, y, and z directions should be substantially less than
the common bond length in an organic molecule (~1–
1.5 Å) to ensure that each subregion can only contain at
most one atom of a specific ligand. Following the
principle described above, a space of length (x) : width
(y) : height (z)012 Å : 8 Å : 8 Å around the
re-superposed ligands was defined, and 0.8 Å was used
as the x, y, and z dimensions of each subregion. Thus, the
active-site space was partitioned into 1500 subregions.
In step 3, all of the atoms of the ligand were assigned to
these 1500 subregions based on the locations of atoms
in the active site. In other words, the number of occu-
pied subregions was equal to the number of atoms in

the ligand. However, since there are always intrinsic
differences between the locations of any two ligands,
the occupied subregions should differ to some degree
among all 45 superposed ligands. Therefore, the sub-
regions considered in the model were those that
contained at least one atom from these 45 ligands. In
this way, 347 subregions were selected, and the remain-
ing 1153 empty subregions were then ignored during
the subsequent modeling steps. Further, the three types
of nonbonding potentials that dominate ligand binding
to a host protein, i.e., electrostatic (E), steric (S), and
hydrophobic (H) interactions, were calculated between
renin and the ligand atoms in each subregion in turn
using empirical formulae. The electrostatic potential
between an atom of renin and a ligand atom was com-
puted using the classical Coulomb law: EPij ¼ k qiqj

"0dij
;

where qi is the partial charge on atom i and dij is the

Fig. 2 a–b Superposition of
virtually constructed ligands 2
(a) and 3 (b) onto their crystal
structures in the active pocket
of renin. The ligands colored
yellow and purple are native
and constructed, respectively

Fig. 3 Schematic
representation of the active-site
spatial partitioning (ASSP) of a
renin–ligand complex. The
space around the ligand mole-
cule is partitioned into
thousands of small subregions,
and three kinds of nonbonding
potentials—electrostatic (E),
steric (S), and hydrophobic (H)
interactions—between renin
and the ligand atoms in each
subregion are calculated in turn
using empirical formulae
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distance between atoms i and j. The partial charges on
the protein and ligand atoms were assigned using
AMBER [26] and Gasteiger [27] charges, respec-
t ive ly. The Lennard–Jones 12–6 poten t ia l

(LPij ¼ ‘ij
D*

ij

dij

� �12

� 2
D*

ij

dij

� �6
� �

; where ‘ij and D*
ij are

the potential well and the contact distance between
atoms i and j, which were retrieved from the AM-
BER force field [26]) was used to describe the
steric interaction between the renin and ligand atoms.
An empirical equation suggested by Zhou et al. [28] was
employed to characterize the interatomic hydrophobic

po t en t i a l : HPij ¼ � Siρi þ Sjρj
� �

e�dij ; where ρ

represents the inherent hydrophobicity of the atoms,
which can be measured using Eisenberg’s scale [29],
and S is the atomic solvent-accessible surface area com-
puted by Sanner’s strategy [30]. A detailed description of
these empirical potentials can be found in our previous
publication [31], where they were successfully employed
to quantitatively characterize the nonbonding profile at the
binding interface between the SH3 domain and its peptide
ligands, and they were considered to be useful for explor-
ing the renin–indole-3-carboxamide complexes in the
present work too.

It worth noting that all of the nonbonding potential
calculations performed here were done using atomic coor-
dinates. However, different ligands have different numb-
ers of atoms, so directly using atoms to assign parameters
would result in different numbers of independent variables
for different ligands. Therefore, the strategy of partitioning
the ligand space into 1500 consensus subregions was used
to obtain a consistent number of variables for different
ligands.
In step 4, noting that three interaction potentials were
calculated for each subregion of a specific ligand, then a
total of 3×150004500 nonbonding parameters wwere
generated for each ligand to characterize its binding
profile with the renin receptor. The nonbonding param-
eters of a series of ligand molecules were combined into
an independent variable matrix X, which was then
linearly correlated with the dependent matrix Y, which
represented the biological activity pIC50, using a so-
phisticated partial least squares (PLS) regression tech-
nique [32]. This chemometric technique has been
widely used to linearly correlate numerous variables
with a few experimental points. The PLS regression
procedure was divided into three steps. (i) The 347×
301041 nonzero variables (the other 3459 that were
zero were not considered) were recombined and trans-
formed into 1041 latent variables, where each latent
variable was the result of linearly combining all 1041
original variables. (ii) A select few of the most

informative and statistically significant latent varia-
bles were selected as the so-called significant latent
variables. (iii) These significant latent variables
were linearly correlated with the biological activities
of the 45 ligands. In this study, the significant
latent variables were selected by leave-one-out
cross-validation (LOOCV); that is, latent variables
were added to the model one at a one, in order of
their relative importance, and the LOOCV q2 statistic
of each model was computed. The optimal number of
significant latent variables was thus the number that
resulted in the largest q2 value.

More details on the PLS algorithm can be found in
[33–35].

Results and discussion

Development of PLS models

In the areas of statistical modeling and QSAR, validation is
one of the most important aspects for developing reliable
and predictable models. Although LOOCV has been broadly
used for this purpose, in a highly cited paper, Golbraikh and
Alexande pointed out that a high LOOCV performance
appears to be a necessary but not a sufficient condition for a
highly predictive model, and they further emphasized that
external validation is the only way to establish a reliable
model [36]. In this regard, we randomly selected ten samples
from the 45 investigated indole-3-carboxamide derivatives in
order to define an external test set that could be used to
validate the PLS models built from the internal training set
defined by the other 35 unselected compounds. LOOCV was
also employed in the present work to perform a preliminary
test of the model’s stability and generalization ability.

The statistics resulting from the stepwise development of
PLS models based upon different combinations of nonbond-
ing components are listed in Table 1. As can be seen, the
model’s quality is generally improves as the number of
nonbonding components used increases, and the final mod-
el, which utilizes all three components, shows both the
greatest fitting ability (indicated by r200.766) and the high-
est stability (given by rcv

200.704), suggesting that none of
the three nonbonding aspects independently dominates the
binding behavior of indole-3-carboxamides to renin, and
that various properties have significant effects on the binding.
Based on the contributions of the different nonbonding com-
ponents to the PLS models, it seems that the relative impor-
tance of these components increases in the order: steric <
hydrophobic < electrostatic (for example, the contributions
are, respectively, 22.1 % : 32.5 % : 45.4 % in the final model).
This is expected, because a number of charged salt bridges and
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polar hydrogen bonds have been observed at the binding inter-
faces of crystallized renin–ligand complexes [9], and there is a
considerable hydrophobic effect due to intense contact between
nonpolar renin residues and the aromatic rings of the indole-3-
carboxamides (this point will be discussed further in the next
section). Furthermore, the optimal model, which incorporates
all three nonbonding components, was used to fit the 35 inter-
nal training samples and to carry out predictions for ten external
test samples. The scatter in the fitted or predicted pIC50 with
respect to experimentally measured values for these samples
are shown in Fig. 4. It is evident that the scatter is fairly low; all
of the points are close to the lines of best fit, and there are no
obvious outliers that deviate significantly from the lines. Spe-
cifically, the coefficient of determination (rprd

200.638) and the
standard deviation (SD00.673) obtained for the external test is
acceptable, which confirms that this model is statistically reli-
able and can be exploited as an effective and powerful predic-
tive tool for generalizing and interpreting the biological
activities and physicochemical properties of other modified
derivatives (vide post).

Analysis of the substructure-color plots

A significant advantage of our ASSP method over traditional
molecular analyses is that ASSP not only provides reliable
predictions for candidate molecules with unknown activities,
but it also provides a series of so-called substructure-color
plots (SCPs) that visually show the contributions of diverse
substructural segments of the studied compound to the
biological activity or binding affinity of that compound. As
mentioned above, in the ASSP procedure, the space around
the active site of renin is partitioned into 1500 subregions, and
each of these is associated with three nonbonding properties,
i.e., electrostatic, steric, and hydrophobic aspects. Conse-
quently, 4500 variables characterizing the nonbonding profile
between renin and the ligand atoms that belong to different
subregions of the active site were calculated and correlated
with the biological activities of the ligands using PLS regres-
sion. The standardized PLS coefficients provide direct insight

into the contribution of each subregion (associated with each
nonbonding aspect) to the activity. Given a specific nonbond-
ing aspect, we define a subregion as a favorable one if its
corresponding coefficient value satisfies CCmin þ 2

5 �
Cmax � Cminð Þ (attractive interactions are always associated
with negative potential), an unfavorable one if CCmax � 2

5 �
Cmax � Cminð Þ (repulsive interactions are always associated
with positive potential), or an insignificant one (if Cmax and
Cmin are the maximum and minimum values among all
coefficients, respectively). The moieties of a ligand can be
assigned to different subregions and then marked with distinct
colors to indicate the nature of their contributions (favorable,
unfavorable, or insignificant) to the ligand’s activity. In this
way, three SCPs that present the electrostatic, steric, and
hydrophobic aspects, respectively, are generated for a studied
ligand. In this work, the compound with the highest activity,
41, was used as a paradigm to illustrate the use and signifi-
cance of SCPs (Fig. 5), and stereoview and schematic repre-
sentations of the nonbonding interactions between renin and
compound 41 are also provided for interpretive purposes in
Fig. 6. Before we begin this discussion, if is worth bearing in
mind that—as recently pointed out by Bissantz et al. [37]—the
contributions of the different parts of a ligand molecule to its
affinity are highly dependent on each other, even when these
parts are separated by a significant distance.

Electrostatic SCP

The electrostatic interaction is known to be a critical influence
on the stability and specificity of the renin–indole-3-carbox-
amide architecture, since this series of ligands all have a
protonated secondary amine in the piperazine ring at the R1

position (see Table S1) that can form two solid salt bridges
with the negatively charged Asp32 and Asp215 residues of
renin (Fig. 6a, d). Also, three strong hydrogen bonds were
observed between the >C0O/–OH groups of compound 41
and the polar Thr77/His287 residues of renin (Fig. 6a, d). If
we compare these to the electrostatic SCP (Fig. 5a), these
molecular moieties are always found to provide a favorable

Table 1 Stepwise development
of PLS models based on differ-
ent combinations of nonbonding
components

a NL number of significant latent
variables.
b r2 coefficient of determination.
c SD standard deviation.

Components NLa No
validation

LOOCV Fraction

r2b SDc rcv
2 SDcv Electrostatic Steric Hydrophobic

Electrostatic 4 0.681 0.628 0.594 0.712 1.000 0.000 0.000

Steric 3 0.630 0.671 0.483 0.810 0.000 1.000 0.000

Hydrophobic 4 0.694 0.618 0.560 0.739 0.000 0.000 1.000

Electrostatic + steric 4 0.731 0.560 0.654 0.658 0.745 0.255 0.000

Electrostatic + hydrophobic 5 0.755 0.546 0.678 0.631 0.663 0.000 0.337

Steric + hydrophobic 4 0.727 0.571 0.610 0.694 0.000 0.390 0.610

Electrostatic + steric + hydrophobic 6 0.766 0.529 0.704 0.580 0.454 0.221 0.325
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contribution (red) to the biological activity, indicating that the
formation of salt bridges and hydrogen bonds by these moie-
ties is crucial to the high activity of compound 41. In addition,
two –CH3 groups and an –F group on the indole ring and at the
R2 position also have favorable electrostatic effects on the
ligand’s activity. This was confirmed by the fact that removing
any of these three groups resulted in a substantial decrease in
the activity. For example, cutting the indole –CH3 leads to a
decrease in the pIC50 value from 8.70 (for compound 41) to
8.40 (for compound 40), and cutting R2–CH3 and –F leads to a
pIC50 value of 8.05 (for compound 15). By visually analyzing
the crystal structure, we found that there was intense contact
between the –CH3 and the polar atoms of renin, and particu-
larly between the –F and the nonpolar H atoms of renin
(Fig. 6b), which created a complicated electrostatic network
across the ligand-binding interface. Furthermore, all of the
electrostatically unfavorable segments in the compound 41
(blue) seem to be close to favorable regions. However, we
would expect this given that the strong electronic effect of the
polar moieties of the favorable segments would fundamentally
influence the electrostatic properties of neighboring unfavor-
able regions, leading to significant coupling among them.

Steric SCP

An initial glance of the steric SCP (Fig. 5b) suggests that
most of the sterically favorable segments (green) are located
on the three aromatic rings (indole, R2, and R3) of com-
pound 41, which are surrounded by a number of unfavorable
moieties (yellow). This can be explained by the nature of the
origination of steric potential between the receptor and
ligand; the electron-rich aromatic rings of the ligand are
easy to polarize and hence are strongly affected by dispersion
due to their surroundings, which significantly contributes to
the attractive aspect of the steric potential. On the other hand,
the atoms and groups that float on the surface of the ligand
molecule prefer to penetrate into the body of renin, which
leads to minor steric collisions at the interface. A further
survey of the steric SCP revealed that the molecular segments
associated with the formation of salt bridges, hydrogen bonds,
and electrostatic interactions with renin residues are most
likely to be the sterically unfavorable regions of the ligand.
In fact, it is widely recognized that a molecular moiety tends to
clash with its surroundings if this moiety is participating in
direct polar interactions with its interacting partner [38]. In this

Fig. 4 Plot of calculated
against experimental pIC50

values for the 35 training
samples (shown as red circles)
and the ten test samples
(represented by blue diamonds).
The PLS model used in this plot
incorporated all three
nonbonding components

Fig. 5 a–c Substructure-color plots: a electrostatic plot; b steric plot; c hydrophobic plot. The substructural segments that contribute to the
molecular activity in different ways are marked in different colors
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way, the unfavorable collisions are offset by the favorable
polar interactions.

Hydrophobic SCP

The hydrophobic force is known to be a major factor that
promotes the binding of indole-3-carboxamide ligands to
renin, since the ligands possess a number of aromatic rings
that are highly suited to the hydrophobic pocket near the
active site of renin. As can be seen from the hydrophobic
SCP (Fig. 5c), hydrophobically favorable segments (cyan)
are common in these aromatic regions, leading to strong
interactions with the vicinal nonpolar residues Val30,
Trp39, Tyr75, Pro111, Phe112, Leu114, and Phe117 of renin
(Fig. 6c, d). By contrast, the polar and charged segments
(such as >C0O, –OH, and >NH2

+) of compound 41 are, as
might be anticipated, colored pink, indicating that these
groups have an unfavorable hydrophobic effect. This is
reasonable because the packing of the polar groups that
occurs upon binding is an endothermic process that is
accompanied by the loss of water molecules from the surface.

This incurs a significant desolvation penalty and is thus ener-
getically unfavorable for binding.

Possible ASSP limitations

In contrast to traditional grid-based QSAR methods such as
CoMFA [21], ASSP only considers subregions containing at
least one atom of one ligand, so most of the subregions are
empty. This feature means that this method overlooks the
contributions of the subregions that are only filled with new
ligand atoms. Thus, we surveyed the 347 filled regions in
the active site of renin, and found that very few (just 12) of
these regions were filled with only one ligand atom; indeed,
half of them had more than 20 atoms. This implies that the
occurrence of substructures of the new ligands in unfilled
subregions is a relatively rare phenomenon, and may not
have a significant influence on the predicted results of
ASSP. In addition, one would expect that ASSP is very
sensitive to slight conformational changes in ligands. We
therefore examined the effect of the re-superposition of the
45 ligands on the QSAR modeling, and found that there is

Fig. 6 a Close-up of hydrogen
bonds and salt bridges between
renin and a ligand; b close-up
of nonbonding interactions be-
tween renin and a ligand that
involve fluorine; c close-up of
the distribution of nonpolar
residues around a ligand; d
schematic representation of the
nonbonding interactions be-
tween renin and a ligand (gen-
erated with LIGPLOT [39]). All
of these plots were prepared
using the crystal structure of
renin bound to the compound
with the highest activity, com-
pound 41 (PDB entry: 3oot)
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essentially no difference between the modeling results
obtained using the original and re-superposed ligands.
Nevertheless, the ASSP method is currently far from perfect,
and we will modify and improve it in future.

Conclusions

Statistical analysis and visual examination of the nonbonding
profile between protein receptors and their cognate ligands are
effective ways of enhancing our understanding of the molec-
ular basis for and the structural foundations of ligand recog-
nition and binding by host proteins. In this study, we proposed
a new method called active-site spatial partitioning (ASSP),
which was employed to dissect the nonbonding profile around
the active site of renin and associate the substructural proper-
ties of bound ligands with the biological activities of the
ligands. The investigations revealed that:

(a) The binding behavior of indole-3-carboxamide deriva-
tives to renin is primarily dominated by the electrostat-
ic component and secondarily by hydrophobic forces,
whereas the steric aspect only has a relatively mild
effect on the binding.

(b) The polar and charged groups (such as >C0O, –OH, and
>NH2

+) of ligandmolecules are the most important sources
of electrostatic attraction and steric penetration, since they
can form complicated hydrogen-bond and salt-bridge net-
works, but they also undergo intense collisions with their
surrounding renin residues. In contrast, the ligand’s aromat-
ic rings appear to be the main providers of hydrophobic
potential and dispersion interactions with the renin receptor.

(c) The fluorine and nonpolar hydrogen atoms were ob-
served to participate in a number of weakly attractive
interactions with their surroundings, and can therefore
considerably enhance the biological activities of
ligands, provided that their presence does not lead to
severe steric hindrance and collisions.
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